Transient aging in fractional Brownian and Langevin-equation motion.

نویسندگان

  • Jochen Kursawe
  • Johannes Schulz
  • Ralf Metzler
چکیده

Stochastic processes driven by stationary fractional Gaussian noise, that is, fractional Brownian motion and fractional Langevin-equation motion, are usually considered to be ergodic in the sense that, after an algebraic relaxation, time and ensemble averages of physical observables coincide. Recently it was demonstrated that fractional Brownian motion and fractional Langevin-equation motion under external confinement are transiently nonergodic-time and ensemble averages behave differently-from the moment when the particle starts to sense the confinement. Here we show that these processes also exhibit transient aging, that is, physical observables such as the time-averaged mean-squared displacement depend on the time lag between the initiation of the system at time t=0 and the start of the measurement at the aging time t(a). In particular, it turns out that for fractional Langevin-equation motion the aging dependence on t(a) is different between the cases of free and confined motion. We obtain explicit analytical expressions for the aged moments of the particle position as well as the time-averaged mean-squared displacement and present a numerical analysis of this transient aging phenomenon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

From the Underdamped Generalized Elastic Model to the Single Particle Langevin Description

Abstract: The generalized elastic model encompasses several linear stochastic models describing the dynamics of polymers, membranes, rough surfaces, and fluctuating interfaces. While usually defined in the overdamped case, in this paper we formally include the inertial term to account for the initial diffusive stages of the stochastic dynamics. We derive the generalized Langevin equation for a ...

متن کامل

Markovian embedding of fractional superdiffusion

The Fractional Langevin Equation (FLE) describes a non-Markovian Generalized Brownian Motion with long time persistence (superdiffusion), or anti-persistence (subdiffusion) of both velocity-velocity correlations, and position increments. It presents a case of the Generalized Langevin Equation (GLE) with a singular power law memory kernel. We propose and numerically realize a numerically efficie...

متن کامل

Fractional Langevin equation.

We investigate fractional Brownian motion with a microscopic random-matrix model and introduce a fractional Langevin equation. We use the latter to study both subdiffusion and superdiffusion of a free particle coupled to a fractal heat bath. We further compare fractional Brownian motion with the fractal time process. The respective mean-square displacements of these two forms of anomalous diffu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 88 6  شماره 

صفحات  -

تاریخ انتشار 2013